Dentistry & Health Care Idiopathic Pulmonary Fibrosis: A Newly-identified Occupational Hazard for Dentists

The practice of dentistry is associated with a variety of occupational hazards. These are largely preventable, or can be minimized, by taking precautions to reduce the risk of exposure. Occupational hazards can largely be categorized as risk of exposure to chemicals and other noxious substances, risk of physical injury, and risk of infection and disease transmission.1Saccucci M, Ierardo G, Protano C, Vitali M, Polimeni A. How to manage the biological risk in a dental clinic: current and future perspectives. Minerva Stomatol 2017;66(5):232-9.,2Bârlean L, Dănilă I, Săveanu I, Balcoş C. Occupational health problems among dentists in Moldavian Region of Romania. Rev Med Chir Soc Med Nat Iasi 2013;117(3):784-8.,3Centers for Disease Control and Prevention. Infection prevention & control guidelines & recommendations. Summary of infection prevention practices in dental settings: Basic expectations for safe care. Available at: https://www.cdc.gov/oralhealth/infectioncontrol/guidelines/index.htm.,4Occupational Health and Safety Administration. Available at: www.osha.org. Most recently, idiopathic pulmonary fibrosis, a fatal lung disease, has been identified as an occupational hazard in dentistry.

Idiopathic Pulmonary Fibrosis

Recently, a newly identified work-related hazard for dentists and dental personnel was identified by the Centers for Disease Control and Prevention (CDC) in the United States.5Nett RJ, Cummings KJ, Cannon B, Cox-Ganser J, Nathan SD. Dental personnel treated for idiopathic pulmonary fibrosis at a tertiary care center – Virginia, 2000-2015. Morb Mortal Wkly Rep 2018;67(9):270-3. Data from a tertiary care hospital revealed that between 2000 and 2015, 894 patients were treated for idiopathic pulmonary fibrosis (IPF) including 8 dentists and 1 dental technician. Their mean age was 64 years, 7 of the 9 patients had died, and the median time of survival from initial diagnosis was 3 years. (Table 1)

IPF is a progressive pneumonia that involves scarring of the lungs and fibrosis of the interstitial areas due to ongoing deposition of collagen in the cells that line the bronchial alveolar spaces. While the cause of IPF is not fully understood, this disorder has been associated with exposure to cigarette smoke, viral infection, metal and coal dust, and agricultural environments.6Kuehn B. Dentists at risk of lung disease? J Am Med Assoc 2018;319(16):1650. IPF is a chronic condition with a median survival of 3 to 5 years.7Richeldi L, Collard HR, Jone MG. Idiopathic pulmonary fibrosis. Lancet 2017;389(10082):1941-52.

This was the first known IPF cluster among persons in the dental profession. Based on the regional population and number of dentists, this cluster represents an almost 23 times higher rate of occurrence. The CDC report noted limitations of the analysis, including data from only one center, and lack of complete information regarding environmental exposures. However, the report also noted that dentists and others in the profession are exposed to a wide range of inhaled environmental hazards, which may pose a significant risk for the development of IPF in the absence of personnel protective equipment and other safety precautions.

Dentists and others in the profession are exposed to a wide range of inhaled environmental hazards, which may pose a significant risk for the development of IPF in the absence of personal protective equipment and other safety precautions.

Other Lung Disorders

While relatively uncommon overall,8Chung SJ, Koo GW, Park DW, Kwak HJ, Yhi JY, Moon JY, Kim SH, Sohn JW, Yoon HJ, Shin DH, Park SS, Pyo JY, Oh YH, Kim TH. Pulmonary foreign body granulomatosis in dental technician. Tuberc Respir Dis (Seoul) 2015;78(4):445-9. occupational lung disease has been reported more often in dental technicians than in dentists. Lung disorders affecting dental technicians globally include reduced lung function, silicosis, asbestosis, granulomatosis, asthma, and pneumoconiosis.8Chung SJ, Koo GW, Park DW, Kwak HJ, Yhi JY, Moon JY, Kim SH, Sohn JW, Yoon HJ, Shin DH, Park SS, Pyo JY, Oh YH, Kim TH. Pulmonary foreign body granulomatosis in dental technician. Tuberc Respir Dis (Seoul) 2015;78(4):445-9. These have been associated with a lack of, or insufficient, protection (e.g., dust masks) against exposure to chrome-cobalt-molybdenum alloys, beryllium, silica, asbestos, acrylic dust and/or other materials. In a CDC report, silicosis was confirmed in nine dental laboratory technicians in a variety of locations in the United States between 1994 and 2000, associated with exposure to silica dust.9CDC. Silicosis in dental laboratory technicians — five states, 1994—2000. Morb Mortal Wkly Rep 2004;53(09):195-97. In one of the cases, asbestosis and berylliosis were also diagnosed. (Table 1)

Further, in 2017 it was reported that 6 older dentists in the United States had been diagnosed with malignant mesothelioma associated with brief exposures to asbestos-containing dental tape, which was used for casting rings until the 1970s.10Markowitz SB, Moline JM. Malignant mesothelioma due to asbestos exposure in dental tape. Am J Ind Med 2017;60(5):437-2. (Table 1) Four cases of dentists with mesothelioma were also reported in Italy in a 2017 publication, and one case previously. These were rare tragic occurrences, but preventable with proper precautions.11Mensi C, Ciullo F, Barbieri GP, Riboldi L, Somigliana A, Rasperini G, Pesatori AC, Consonni D. Pleural malignant mesothelioma in dental laboratory technicians: A case series. Am J Ind Med 2017;60(5):443-8.

Table 1. Lung diseases identified as occupational hazards in dental professionals and personnel
Idiopathic pulmonary fibrosis
Silicosis
Asbestosis
Granulomatosis
Asthma
Pneumoconiosis
Berylliosis
Malignant mesothelioma

Respiratory hypersensitivity has also been reported among dentists and dental personnel. In Finland, 62 cases were diagnosed between 1989 and 1998, compared to 2 cases from 1975 up until 1989. By 1995 respiratory hypersensitivity was twice as prevalent as in the general population.12Piirilä P, Hodgson U, Estlander T, Keskinen H, Saalo A, Voutilainen R, Kanerva L. Occupational respiratory hypersensitivity in dental personnel. Int Arch Occup Environ Health 2002;75(4):209-16. Of 28 cases of rhinitis and asthma reported, 24 resulted from exposure to methacrylates.12Piirilä P, Hodgson U, Estlander T, Keskinen H, Saalo A, Voutilainen R, Kanerva L. Occupational respiratory hypersensitivity in dental personnel. Int Arch Occup Environ Health 2002;75(4):209-16. Among almost 800 dental assistants, daily exposure to methacrylates resulted in a more than two-fold increased risk of adult-onset asthma, as well as a 37% and 69% increased risk, respectively, of nasal hypersensitivity or a cough/phlegm.13Jaakkola MS, Leino T, Tammilehto L, Ylöstalo P, Kuosma E, Alanko K. Respiratory effects of exposure to methacrylates among dental assistants. Allergy 2007;62(6):648-54. (Figure 1) Among individuals at greater risk for atopic disease, the risk of asthma was increased by more than 300%. Further, a dose-response relationship was observed.13Jaakkola MS, Leino T, Tammilehto L, Ylöstalo P, Kuosma E, Alanko K. Respiratory effects of exposure to methacrylates among dental assistants. Allergy 2007;62(6):648-54.

Figure 1. Increased risk for condition with daily exposure to methacrylates



Among almost 800 dental assistants, daily exposure to methacrylates resulted in a more than two-fold increased risk of adult-onset asthma.

Risk of transmission of microorganisms and infectious diseases

Risk of exposure to microorganisms in the dental setting is well-recognized, including those causing diseases affecting the lungs. An Austrian study in 1987 concluded that dentists and dental personnel were at increased risk of Legionella infection.14Reinthaler F, Mascher F, Stünzner D. Legionella pneumophila: seroepidemiologic studies of dentists and dental personnel in Austria. [Article in German] Zentralbl Bakteriol Mikrobiol Hyg B 1987;185(1-2):164-70. However, a meta-analysis of 7 studies found no evidence of increased risk of Legionella infection for dental personnel for studies conducted after 1998, attributed to infection control protocols and possibly differences in the municipal water supply.15Petti S, Vitali M. Occupational risk for Legionella infection among dental healthcare workers: meta-analysis in occupational epidemiology. BMJ Open 2017;7(7):e015374. doi: 10.1136/bmjopen-2016-015374. This concurs with the finding of a similar risk level to the general population in ADA Health Screening Programs conducted between 2002 and 2012,16Estrich CG, Gruninger SE, Lipman RD. Rates and predictors of exposure to Legionella pneumophila in the United States among dental practitioners: 2002 through 2012. J Am Dent Assoc 2017;148(3):164-171. and highlights the importance of infection control protocols. In 2014, transmission of Mycobacterium tuberculosis and subsequent active tuberculosis (TB) was reported in an office. However, recommended infection control protocols and policies related to TB had not been followed.17Merte JL, Kroll CM, Collins AS, Melnick AL. An epidemiologic investigation of occupational transmission of Mycobacterium tuberculosis infection to dental health care personnel: infection prevention and control implications. J Am Dent Assoc 2014;145(5):464-71.

A meta-analysis of 7 studies found no evidence of increased risk of Legionella infection for dental personnel for studies conducted after 1998, attributed to infection control protocols and possibly differences in the municipal water supply.

Implications for Dentistry

Appropriate personal protective equipment is essential to prevent and reduce injury, disease transmission and exposure to chemicals and other potentially noxious materials. Additional measures needed to reduce risk of exposure and infection with pathogens include inoculations, hand hygiene, personal protective equipment, and adherence to other infection prevention and control measures.

The individuals diagnosed with IPF began practice at a time when the profession was not as concerned about occupational exposure as it is today. The need for respiratory protection in emphasized by the CDC report, and National Institute for Occupational Safety and Health-certified respirators have been recommended.6Kuehn B. Dentists at risk of lung disease? J Am Med Assoc 2018;319(16):1650. Individuals with sensitivity/allergies to specific chemicals and materials should avoid their use. Chemicals and materials must be handled and stored in accordance with the manufacturer’s instructions for use, recommendations and regulations. Further, safety and health requirements must be met. Safety data sheets provide detailed information on chemicals, hazards, avoiding and treating exposures.

Chemicals and materials must be handled in accordance with the manufacturer’s instructions for use, recommendations and regulations, and safety and health requirements must be met.

Conclusions

Dentists, dental personnel and dental technicians must be aware of occupational risks associated with dentistry, including inhaled hazards. It is essential that dentists, dental personnel and dental technicians diligently follow established infection control and prevention guidelines, and health and safety regulations, designed to reduce the risk of injury, transmission of microorganisms and disease, and the risk of exposure to noxious substances.

References

  • 1.Herrera D, Molina A, Buhlin K, Klinge B. Periodontal diseases and association with atherosclerotic disease. Periodontol 2000. 2020;83(1):66-89.
  • 2.Sanz M, Ceriello A, Buysschaert M, Chapple I, Demmer RT, Graziani F, et al. Scientific evidence on the links between periodontal diseases and diabetes: Consensus report and guidelines of the joint workshop on periodontal diseases and diabetes by the International Diabetes Federation and the European Federation of Periodontology. J Clin Periodontol. 2018;45(2):138-49.
  • 3.Qian Y, Yuan W, Mei N, Wu J, Xu Q, Lu H, et al. Periodontitis increases the risk of respiratory disease mortality in older patients. Exp Gerontol. 2020;133:110878.
  • 4.Chen CK, Wu YT, Chang YC. Association between chronic periodontitis and the risk of Alzheimer’s disease: a retrospective, population-based, matched-cohort study. Alzheimers Res Ther. 2017;9(1):56.
  • 5.Teshome A, Yitayeh A. Relationship between periodontal disease and preterm low birth weight: systematic review. Pan Afr Med J. 2016;24:215.
  • 6.Nwizu N, Wactawski-Wende J, Genco RJ. Periodontal disease and cancer: Epidemiologic studies and possible mechanisms. Periodontol 2000. 2020;83(1):213-33.
  • 7.Rivera C. Essentials of oral cancer. Int J Clin Exp Pathol. 2015;8(9):11884-94.
  • 8.Zeng XT, Deng AP, Li C, Xia LY, Niu YM, Leng WD. Periodontal disease and risk of head and neck cancer: A meta-analysis of observational studies. PLoS One. 2013;8(10):e79017.
  • 9.Wang RS, Hu XY, Gu WJ, Hu Z, Wei B. Tooth loss and risk of head and neck cancer: A meta-analysis. PLoS One. 2013;8(8):e71122.
  • 10.Zeng XT, Luo W, Huang W, Wang Q, Guo Y, Leng WD. Tooth loss and head and neck cancer: A meta-analysis of observational studies. PLoS One. 2013;8(11):e79074.
  • 11.Javed F, Warnakulasuriya S. Is there a relationship between periodontal disease and oral cancer? A systematic review of currently available evidence. Crit Rev Oncol Hematol. 2016;97:197-205.
  • 12.Colonia-Garcia A, Gutierrez-Velez M, Duque-Duque A, de Andrade CR. Possible association of periodontal disease with oral cancer and oral potentially malignant disorders: a systematic review. Acta Odontol Scand. 2020;78(7):553-9.
  • 13.Goodman B, Gardner H. The microbiome and cancer. J Pathol. 2018;244(5):667-76.
  • 14.Han YW. Commentary: Oral bacteria as drivers for colorectal cancer. J Periodontol. 2014;85(9):1155-7.
  • 15.Supsavhad W, Dirksen WP, Martin CK, Rosol TJ. Animal models of head and neck squamous cell carcinoma. Vet J. 2016;210:7-16.
  • 16.Binder Gallimidi A, Fischman S, Revach B, Bulvik R, Maliutina A, Rubinstein AM, et al. Periodontal pathogens Porphyromonas gingivalis and F. nucleatum promote tumor progression in an oral-specific chemical carcinogenesis model. Oncotarget. 2015;6(26):22613-23.
  • 17.Lee WH, Chen HM, Yang SF, Liang C, Peng CY, Lin FM, et al. Bacterial alterations in salivary microbiota and their association in oral cancer. Sci Rep. 2017;7(1):16540.
  • 18.Zhang WL, Wang SS, Wang HF, Tang YJ, Tang YL, Liang XH. Who is who in oral cancer? Exp Cell Res. 2019;384(2):111634.
  • 19.Zhang L, Liu Y, Zheng HJ, Zhang CP. The oral microbiota may have influence on oral cancer. Front Cell Infect Microbiol. 2019;9:476.
  • 20.Chattopadhyay I, Verma M, Panda M. Role of oral microbiome signatures in diagnosis and prognosis of oral cancer. Technol Cancer Res Treat. 2019;18:1533033819867354.
  • 21.Uitto VJ, Suomalainen K, Sorsa T. Salivary collagenase. Origin, characteristics and relationship to periodontal health. J Periodontal Res. 1990;25(3):135-42.
  • 22.Schroter D, Hohn A. Role of advanced glycation end products in carcinogenesis and their therapeutic implications. Curr Pharm Des. 2018;24(44):5245-51.
  • 23.Ramos-Garcia P, Roca-Rodriguez MDM, Aguilar-Diosdado M, Gonzalez-Moles MA. Diabetes mellitus and oral cancer/oral potentially malignant disorders: A systematic review and meta-analysis. Oral Dis. 2021;27(3):404-21.
  • 24.Reidy JT, McHugh EE, Stassen LF. A review of the role of alcohol in the pathogenesis of oral cancer and the link between alcohol-containing mouthrinses and oral cancer. J Ir Dent Assoc. 2011;57(4):200-2.
  • 25.Lachenmeier DW, Gumbel-Mako S, Sohnius EM, Keck-Wilhelm A, Kratz E, Mildau G. Salivary acetaldehyde increase due to alcohol-containing mouthwash use: A risk factor for oral cancer. Int J Cancer. 2009;125(3):730-5.
  • 26.Gandini S, Negri E, Boffetta P, La Vecchia C, Boyle P. Mouthwash and oral cancer risk quantitative meta-analysis of epidemiologic studies. Ann Agric Environ Med. 2012;19(2):173-80.
  • 27.Boffetta P, Hayes RB, Sartori S, Lee YC, Muscat J, Olshan A, et al. Mouthwash use and cancer of the head and neck: A pooled analysis from the International Head and Neck Cancer Epidemiology Consortium. Eur J Cancer Prev. 2016;25(4):344-8.
  • 28.Ustrell-Borras M, Traboulsi-Garet B, Gay-Escoda C. Alcohol-based mouthwash as a risk factor of oral cancer: A systematic review. Med Oral Patol Oral Cir Bucal. 2020;25(1):e1-e12.
  • 29.Aceves Argemi R, Gonzalez Navarro B, Ochoa Garcia-Seisdedos P, Estrugo Devesa A, Lopez-Lopez J. Mouthwash with alcohol and oral carcinogenesis: Systematic review and meta-analysis. J Evid Based Dent Pract. 2020;20(2):101407.
  • 30.National Center for Chronic Disease Prevention and Health Promotion (US) Office on Smoking and Health. E-Cigarette Use Among Youth and Young Adults: A Report of the Surgeon General [Internet]. Atlanta (GA): Centers for Disease Control and Prevention (US); 2016. Chapter 3, Health Effects of E-Cigarette Use Among U.S. Youth and Young Adults. Available from: https://www.ncbi.nlm.nih.gov/books/NBK538688/.
  • 31.U.S. Food & Drug Administration. Effective and Compliance Dates Applicable to Retailers, Manufacturers, Importers, and Distributors of Deemed Tobacco Products. Available at: https://www.fda.gov/tobacco-products/compliance-enforcement-training/effective-and-compliance-dates-applicable-retailers-manufacturers-importers-and-distributors-deemed.
  • 32.CDC. State Tobacco Activities Tracking and Evaluation (STATE) System. Available at: https://www.cdc.gov/statesystem/factsheets/ecigarette/ECigarette.html.
  • 33.U.S. Food & Drug Administration. FDA News Release. FDA finalizes enforcement policy on unauthorized flavored cartridge-based e-cigarettes that appeal to children, including fruit and mint. January 2, 2020. Available at: https://www.fda.gov/news-events/press-announcements/fda-finalizes-enforcement-policy-unauthorized-flavored-cartridge-based-e-cigarettes-appeal-children.
  • 34.U.S. Food & Drug Administration. Misleadingly Labeled E-Liquids that Appeal to Youth. Available at: https://www.fda.gov/tobacco-products/ctp-newsroom/misleadingly-labeled-e-liquids-appeal-youth.
  • 35.Vape Ban 2021: Home Delivery of Vaping Products in Jeopardy? February 18, 20201. Available at: https://www.vaporvanity.com/vape-ban/
  • 36.Edwards E. Federal flavor ban goes into effect Thursday, but many flavored vape products will still be available. Feb 5, 2020. Available at: https://www.nbcnews.com/health/vaping/federal-flavor-ban-goes-effect-thursday-many-flavored-vape-products-n1130466.
  • 37.Gold J. More vapers are making their own juice, but not without risks. Kaiser Health News, Nov 13, 2019. Available at: https://www.nbcnews.com/health/vaping/more-vapers-are-making-their-own-juice-not-without-risks-n1081496.
  • 38.Shen S, Saito Y, Ren S, Liu C, Guo T, Qualliotine J, et al. Targeting viral DNA and promoter hypermethylation in salivary rinses for recurrent HPV-positive oropharyngeal cancer. Otolaryngol Head Neck Surg 2020;162(4):512-9. doi: 10.1177/0194599820903031.
  • 39.Hanna GJ, Lau CJ, Mahmood U, Supplee JG, Mogili AR, Haddad RI, et al. Salivary HPV DNA informs locoregional disease status in advanced HPV-associated oropharyngeal cancer. Oral Oncol 2019;95:120-6. doi: 10.1016/j.oraloncology.
  • 40.Malamud D. Saliva as a diagnostic fluid. Dent Clin North Am 2011;55(1):159-78. doi:10.1016/j.cden.2010.08.004.
  • 41.Collins FM. Integrating the 4Ps into patient care. Available at: https://www.colgateoralhealthnetwork.com/article/integrating-the-4ps-into-patient-care/.
  • 42.Knight ET, Murray Thomson W. A public health perspective on personalized periodontics. Periodontol 2000. 2018 Oct;78(1):195-200. doi: 10.1111/prd.12228. PMID: 30198135.
  • 43.Lee SH, Choi BK, Kim YJ. The cariogenic characters of xylitol-resistant and xylitol-sensitive Streptococcus mutans in biofilm formation with salivary bacteria. Arch Oral Biol 2012;57(6):697-703.
  • 44.Trahan L. Xylitol: a review of its action on mutans streptococci and dental plaque: its clinical significance. Int Dent J 1995;45(suppl. 1):77-92.
  • 45.de Cock P. Erythritol functional roles in oral-systemic health. Adv Dent Res 2018;29(1):104-109.
  • 46.U.S. Food & Drug Administration. Paws off xylitol; It’s dangerous for dogs. Available at: https://www.fda.gov/consumers/consumer-updates/paws-xylitol-its-dangerous-dogs.
  • 47.Mickenautsch S, Yengopal V. Effect of xylitol versus sorbitol: a quantitative systematic review of clinical trials. Int Dent J 2012;62(4):175-88.
  • 48.Rethman MP, Beltrán-Aguilar ED, Billings RJ, Burne RA, Clark M, Donly KJ, Hujoel PP, Katz BP, Milgrom P, Sohn W, Stamm JW, Watson G, Wolff M, Wright T, Zero D, Aravamudhan K, Frantsve-Hawley J, Meyer DM; for the American Dental Association Council on Scientific Affairs Expert Panel on Nonfluoride Caries-Preventive Agents. Nonfluoride caries-preventive agents. Executive summary of evidence-based clinical recommendations. J Am Dent Assoc 2011;142(9):1065-71.
  • 49.Milgrom P, Söderling EM, Nelson S, Chi DL, Nakai Y. Clinical evidence for polyol efficacy. Adv Dent Res 2012; 24(2):112-6.
Login to access